
I 

I 

1 

I 

I 

[ 
I 
I 
I 
i 
I 

Bolt Beranek and Newman Inc. 

^ 
mmfrj    • 

B   I i $4 
IM 

jtir« Js» Sap 

rr 
Report No. 4182 

ADA086123 

Development of a Voice Funnel System 
Quarterly Technical Report No. 4 
1 May 1979 to 31 July 1979 

June 1980 

Prepared for: 
Defense Advanced Research Projects 

Q- 
O 

jency 

DTiC 
S£LECTE|^ 

JUL 1    1980l I 

"DISTRlBimON STATCMa'a' A 

Approrad for public release; 
Disüibution Urüimitad 

80  6   30   073 
•vesaw "j    —■     J— -rr 



I 

i 

I 
1 

! 

I1 

Unclassified 
SICUWITY CLASSIFICATIOW OF THIS PAGE (Wh-l Dmlm Emmrrd) 

REPORT DOCUMENTATION PAGE 
1.   NEPOMT NUMBCR 2. SOVT ACCESSION NO 

m^AAU 11A 
*.   TITLE f«id Svbtlitm) 

'l'' j DEVELOPMENT OF A VOICE JTONEL JYSTEM^> 
'^ :^ÜARTERLY TECHNICAL REPORT NO.^'A 

7.   AUTHOKf»*  

M./Hoffman (S 
S. CONTRACT OR GRANT NUMSERr>> 

/   MDAgOS-JS-C-OSSöj 

f.   PERFORMING ORGANIZATION NAME AND ADDRESS 

Bolt Beranek. and Newman Inc. 
50 Moulton Street, Cambridge, MA 02138 

11.   CONTROLLING OFFICE NAME AND AOORESS 

Defense Advanced Research Projects Agency 
1400 Wilson Blvd., Arlington, VA 22209 

14.    MONITORING  AGENCY NAME ft   AOORESV" <""•>'•«' 5*" Conlroltlnt Olllet) 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.    RECIPIENT'S CATALOG NUMBER 

S.   TYPE OF REPORT « PERIOD COVERED 

Quarterly Technical 

(■ PERFORMING ORG. REPORT NUMBER 
4182 

10.    PROGRAM ELEMENT, PROJECT,  TASK 
AREA  4  WORK  UNIT NUMBER« 

ARPA Order No.   3653 

12.   REPORT DATE 

June 1980 
IS.    NUMBER OF PAGES 

28 
IS.    SECURITY CLASS, (ot Ihlm import) 

Unclassified 

ISa.    DECLASSIFI CATION/DOWNGRADING 
SCHEDULE 

18.   DISTRIBUTION STATEMENT (ol ihlm Rupmt) 

Distribution Unlimited 

17.   DISTRIBUTION STATEMENT Co/ Mi« abafrael mtlmnd In Block 20, II dlllmronl Iram Rtport) 

II.    SUPPLEMENTARY NOTES 

luw/^n^ / 
19.   KEY WORDS (Conlinum or, rmnrto »ido II nmeoumy mid Idonllly by block nuaibor) 

Voice Funnel, Digitized Speech, Packet Switching, Butterfly Switch, 
Multiprocessor 

20.    ABSTRACT (Conllnuo an from ildm II nocoomarr and Idmnllly by block mmbor) 

This Quarterly Technical Report covers work performed during the period 
noted on the development of a high-speed interface, called a Voice Funnel, 
between digitized speech streams and a packet-switching communications 
network. 

DD   | JAN 71   1473        EDITION OF 1 NOV «I IS OBSOLETE Unclassified 

SECURITY CLASSIFICATION OF THIS PACK (»hon Dmlm Mnlmimd) 

O(POXOO jy\ 



r 
Report No. 4182 Bolt Beranek and Newman Inc 

DEVELOPMENT OF A VOICE FUNNEL SYSTEM 

QUARTERLY TECHNICAL REPORT NO. 4 
1 May 1979 to 31 July 1979 

June 1980 

[ 

i 
I 

I 

This research was sponsored by the 
Defense Advanced Research Projects 
Agency under ARPA Order No.:  3653 
Contract No.:  MDA903-78-C-0356 
Monitored by DARPA/IPTO 
Effective date of contract:  1 September 1978 
Contract expiration date:  30 November 1980 
Principal investigator:  R. D.  attberg 

■rt. 

4 M-U,. •..:•■ 

. 
t)!"* \ 

ep< 

Prepared for: 

Dr. Robert E. Kahn, Director 
Defense Advanced Research Projects Agency 
Information Processing Techniques Office 
1400 Wilson Boulevard 
Arlington, VA 22209 

The views and conclusions contained in this document are those of 
the author and should not be interpreted as necessarily 
representing the official policies, either express or implied, of 
the Defense Advanced Research Projects Agency 
States Government. 

or the United 

i  i 



I 
Report No. 4182 Bolt Beranek and Newman Inc 

QUARTERLY TECHNICAL REPORT 4 

Contents 

1. introduction   1 

2. Memory Architecture    3 
2.1 Address Spaces    ^ 
2.2 Address Transformation    13 
2.3 Design Considerations   21 

2.3.1 Supervisor and User Modes  21 
2.3.2 Multiple Address Spaces   23 
2.3.3 Protection  24 
2.3.4 Initialization  26 

I 

I 

- 1 - 



I 
1 

I 

I 

I 

Report No. 4182 Bolt Beranek and Newman Inc. 

1.  Introduction 

This Quarterly Technical Report, Number 4, describes aspects 

of our work performed under Contract No. MDA903-78-C-0356 during 

the period from 1 May 1979 to 31 July 1979- This is the fourth 

in a series of Quarterly Technical Reports on the design of a 

packet speech concentrator, the Voice Funnel. 

During this quarter we have completed the basic design of 

the Processor Node hardware for the Butterfly Multiprocessor. 

This report concentrates on the Memory Management section of that 

design. 

A major change has occurred in the design of the Processor 

Node since this report was first drafted. As a result of 

delivery problems with the Z8000 and the anticipated availability 

of the Motorola MC68000, we have changed the design of the 

Processor Node to use the Motorola microprocessor. The technical 

information in this report reflects this change. 

We anticipate that the change from the Zilog Z8000 to the 

Motorola MC68000 will have some important advantages. The 

MC68000 is more homogeneous in its address space and addressing 

modes. The bus organization of the MCS8000 should permit 

recovery after a memory accessing failure, although the initial 

design of the MC68000 will not always provide recovery. Perhaps 

one of the most important characteristics of the MC68000  is  its 

I i 
- 1 - 



Report No. 4182 Bolt Beranek and Newman Inc 

acceptance by much of the research community. We can expect that 

this will ease the design of many tools and assure a long life 

for the Butterfly Multiprocessor. 

- 2 - 
J 
1 



I 
1 

I 

I 

Report No. 4182 Bolt Beranek and Newman Inc. 

2.  Memory Architecture 

The computing power of a machine depends as much on the 

architecture of its memory system as it does on the architecture 

of its processor. 

Three considerations  dominate the design of  the memory 

system of the Butterfly Multiprocessor: 1) the software of this 

machine is based on "processes" (rather than the  strips of the 

Pluribus);  2)  it will  support  large  and  complex  software, 

requiring protection and separation between the component pieces; 

and 3) it is a tightly-coupled  multiprocessor,  so  that shared 

memory will be an important form of communications. 

The virtual memory system of the Butterfly Multiprocessor 

provides each process with up to 256 memory segments. Each 

segment can be from 256 to 64K bytes long. Each segment has 

individual protection and relocation attributes, and each may 

represent local memory (on the same Processor Node), remote 

memory, or I/O device registers. 

! 

I 

- 3 - 



Report No. 4182 Bolt Beranek and Newman Inc. 

2.1  Address Spaces 

The Butterfly Multiprocessor has a 32-bit physical address 

spav- . This address space is the concatenation of the physical 

address spaces of all the Processor Nodes in the machine. The 

physical address space of each Processor Node consists in turn of 

8 subspaces. Each subspace is IM bytes long. The 32-bit 

physical address is organized as an 8-bit Processor Node number 

(permitting up to 256 Processor Nodes), a 3-bit subspace number, 

an unused bit, and a 20-bit subspace offset. This address format 

is illustrated in Figure 2.1-1. 

(8) 

PROCESSOR 
NODE 

NUMBER 

(3) 

1) 
(20) 

SUBSPACE 
OFFSET 

LUNUSED 

■-SUBSPACE 
NUMBER 

Figure   2.1-1   Physical   Address  Format 

-   4  - 

I 
I 
I 



I 

i 

I 

Report No. 4182 Bolt Beranek and Newman Inc. 

The 8 physical address subspaces of a  Processor  Node are 

defined as follows: 

Subspace 
Number   Subspace Defined 

0 Local EPROM memory 
1 I/O Device Registers 
2 Bulk memory not via switch 
3 Bulk memory via switch 
4 Memory Management SAR 
5 Control Register Set A 
6 Control Register Set B 
7 Control Register Set C 

Subspace 0 is the 4K byte Read Only Memory which is local 
to each Processor Node. It contains the bootstrap code 
and certain fundamental parts of the configuration and 
debugging system. The contents of the EPROM on all 
Processor Nodes are expected to be identical. 

Subspace 1 will contain the control registers on the I/O 
cards. This portion of the machine has not yet been fully 
specified. 

Subspace 2 contains the memory which is local to this 
Processor Node and which should be addressed directly. 

Subspace 3 contains remote memory. Local memory (subspace 
2) is also contained in Subspace 3 but can be more 
efficiently accessed through Subspace 2. This distinction 
is addressed in more detail below. 

Subspace 4 contains the Memory Management Unit's control 
registers. These registers will be described later in 
this report. 

Subspaces 5, 6, and 7 are set aside for various control 
registers in the Processor Node itself. 

One of the more important spaces is Subspace 2, where the 

physical memory for this Processor Node is located. As with all 

subspaces,  it is limited in length to IM bytes.  This bounds the 

- 5 - 



Repc   No. 4182 Bolt Beranek and Newman Inc. 

amount of memory that may be placed on a Processor Node. In 

addition, only 4 memory boards can be attached to a Processor 

Node. Since only l6K-bit memory IC's are presently available, 

the maximum amount of memory on one memory board is 128K bytes 

and as a result, the maximum amount of memory on a Processor Node 

is 512K bytes. The maximum amount of memory in a Butterfly 

Multiprocessor with 256 Processor Nodes is thus 128M bytes. 

The 32-bit physical address uniquely represents each 

addressable memory and register in the machine. Its Processor 

Node, subspace, and subspace offset are fully specified. As we 

will see later, the hardware uses Subspace 3 in a special way 

which places limits on how a physical address is interpreted. 

Subspace 3 is not a subspace in the usual sense. Rather, it is a 

way of indicating to the hardware of a Processor Node that this 

reference is not to be interpreted as a local reference. 

While the physical address space reflects the structure and 

needs of the hardware, the virtual address space reflects the 

structure and needs of the software. The software of the 

Butterfly Multiprocessor is divided into processes. Each process 

executes in its own virtual address space, although the virtual 

address spaces of several processes may reference the same 

physical memory, if desired. Thus, while there can only be one 

physical address space in a machine, there may be many virtual 

address spaces in each Processor Node. 

- 6 - 

i 
1 

„  . ■ 



I 
Report No. 4182 Bolt Beranek and Newman Inc. 

The size of the virtual address space of the Butterfly 

Multiprocessor has been designed to match the processor being 

used. The MC68000 is, in a large sense, a 32-bit machine. As 

such, address registers within the machine have a capability for 

32-bit operations. However, only the lower 24 bite of the 

address are actually supoorted in the current implementation of 

the MC68000. As a result, for our purposes, a virtual address is 

a 24-bit number. 

In the Butterfly Multiprocessor we will treat the 24-bit 

virtual  address  as an 8-bit segment number followed by a 16-bit 

|        (8) (8) (16) 

UNUSED SEGMENT 
NUMBER 

SEGMENT 
OFFSET 

Figure 2.1-2 Virtual Address Format 

offset within the segment, as shown in Figure 2.1-2. This 

divides the address space of the machine into 256 segments. Each 

segment can be from 256 to 64K bytes long. Each segment has 

individual protection and relocation attributes, and each may 

represent  local memory  (on  the  same  Processor Node), remote 

I - - 7 - 



Report No. 4182 Bolt Beranek and Newman Inc. 

memory, local I/O device registers, or local control  registers. 

The structure of the Processor Node is shown in 

Figure 2.1-3. This figure illustrates the distinction between 

the virtual and tne physical address spaces. The processor (and 

as a result, the programmer) lives in a virtual address space. 

Every memory reference undergoes a translation into a physical 

address by the Memory Management Unit (MMU) before the access is 

performed. The Processor Node Controller, the switch, the I/O 

devices, and the memory live in a physical address space. The 

MMU links these two spaces. This separation of the machine into 

portions which operate in a virtual address space and those which 

operate in a physical address space seems straightforward, but 

brings forth many subtle issues. 

There have been many views of what transformation is 

appropriate between the address generated and used by the 

processor and the address used by the memory hardware of a 

machine. The simplest is the identity transformation in which 

the virtual and physical address spaces are identical and no 

transformation is performed. This requires less hardware and 

imposes less delay in the path of a memory access than the 

current virtual/physical split does. 

The identity transformation is also more efficient since 

there is less overhead associated with manipulation of the 

address space and  context  swapping overhead  can be reduced. 

- 8 - 

npfgis gr --T-»—— -^^ 

i 

J 



1 

Report No. 4182 Bolt Beranek and Newman Inc 

! 

! 

PROCESSOR 
MC 68000 

MEMORY 
MANAGEMENT 

UNIT 

EPROM 
MEMORY 

I/O 
BOARDS 

J 

SWITCH 
INTERFACE 

MEMORY 
BOARDS 

VIRTUAL 
ADDRESS 

SPACE 

PHYSICAL 
ADDRESS 

SPACE 

! 

Figure   2.1-3   Processor   Node  Diagram 

-  9  - 

-Tm*z / ■v- 



Report No. 4182 Bolt Beranek and Newman Inc 

However,  the most  important issue involving the virtual memory 

scheme concerns the architecture of the machine. 

A choice must be made between the use of virtual or physical 

addresses in the implementation of the I/O system because a DMA 

transfer must be programmed using either virtual or physical 

addresses. The transfer will be initiated by a user process 

running in a virtual environment, but when the DMA accesses 

occur, it may be hard to identify and locate tie appropriate 

environment. Alternatively, if the DMA operates in the physical 

address space, it is necessary to convert the virtual addresses 

of the DMA pointers into physical addresses and to ensure that 

every DMA access is legal. Such accesses may not be legal even 

if the control blocks are valid. 

The split between virtual and physical address space is even 

more . complicated in a tightly coupled multiprocessor since the 

mapping function is performed only once. A process on one 

Processor Node executes in a controlled virtual address space. 

When it accesses a memory location on another Processor Node, the 

second Processor Node is a physical access. As a result, the 

second Processor Node must trust the first Processor Node to 

generate a legal and valid memory address. As a result, the 

Processor Nodes are vulnerable to hardware or software errors on 

other Processor Nodes. 

- 10 - 

I 

I 

J 



I 
1 

I 

I 

I 

Report No. 4182 Bolt Buranek and Newman Inc 

To fix this problem, we could add another map which would 

protect and perhaps relocate accesses that come in over the 

Butterfly Switch. However, it is very difficult to manage this 

extra layer of indirection. 

The goal of a virtual memory system is to allow the software 

to be better protected and more easily written. The virtual and 

physical address spaces have different constraints. The physicrl 

address space must be large enough that the ultimate main memory, 

1,0, and special register spaces can be represented. This space 

must be organized so that any physical address can be reached 

quickly. 

The virtual address space, on the other hand, must be large 

enough that the program may be written without becoming 

"cramped". There is no reason to suppose that the physical and 

virtual spaces should be the same size or should be organized in 

the same way. 

Having decided to implement a virtual memory system, we face 

the options of segmentation and paging. Segmentation is the 

division of an address space into variable length blocks, usually 

by means of a virtual memory mapping. Paging, on the other hand, 

divides the space into fixed length pieces. The implications of 

the two schemes are quite different. Segments are intended as an 

aid to the sophisticated programmer in organizing the protection, 

sharing, and location of his process.  Pages are used to break up 

hi- 
- 11 - 

"VKSZ. /        ~r  "-■■ ff "J11  ■■" ■ '       ' I 



Report No. 4182 Bolt Beranek and Newman Inc. 

the fjll address space into more manageable fixed size pieces for 

the operating system. Often demand paging is used to "cache" the 

contents of a virtual address space through swapping on a 

secondary storage medium. 

Segmentation can be implemented on top of paging, as in the 

Multics system. However, such a scheme appears too complex and 

requires too much additional mechanism. In addition, since the 

MC68000 cannot now support demand paging, we have determined that 

a simple segmentation scheme is most appropriate for the 

Butterfly Multiprocessor. 

I 

- 12 - 

'WBhSsy;"- ■■"ww' 
^MM. 

\ 

1 



I 
1 

Report No. 4182 

2.2  Address Transformation 

Bolt. Beranek and Newman Inc 

I 

! 

The purpose of memory management is to separate the virtual 

address space as seen by the processing elements from the 

physical address space. The memorv manager serves as an 

interface between these two spaces, translating virtual addresses 

into physical addresses. The time of the mapping is also a 

convenient one to perform some ancillary functions such as 

protection. 

The memory management system of the Butterfly Multiprocessor 

contains 512 Segment Attribute (SA) registers on each Processor 

Node. Each SA register defines the address translation and 

protection characteristics for one segment. A set of registers 

are grouped together to form an address space for a process. 

There is also a single Address Space Attribute (ASA) register 

which, when loaded with the address and extent of a group of SA 

registers, defines the currently active address space. 

This provides for holding many address spaces in the SA 

register table at the same time. The mapping registers of the 

MMU are built from IK-bit by 4-bit static RAMS. Since the 

largest address space is 256 segments, and many processes will be 

less than 16 segments long, there is a question of what to do 

with the unused mapping registers. Since the stages of address 

translation and access control need not happen at the same time, 

the hardware time-multiplexes the mapping registers.   This 

il I ' 
- 13 - 



Report No. 4182 Bolt. Beranek and Newman Inc 

reduces  the  number  of mapping registers to 512.  This is still 

many more than the number of segments used by a process. 

A virtual address space can consist of 4, 8, 16, 32, 64, 

128, or 256 segments. Since there are 512 SA registers in the 

hardware of a Processor Node, enough Segment Attribute registers 

are available to hold from 2 to 128 address spaces 

simultaneously. In order to change address spaces, it is only 

necessary to change the ASA register. We hope that this will 

result in a very fast process switching time. 

The virtual address translation function has several phases: 

1. Using the ASA register and the segment number from the 
virtual address, select the correct SA register. If the 
segment number is invalid, give an error. 

2. Using the SA register selected above and the segment 
offset from the virtual address, generate the physical 
address. If the segment offset is too large, give an 
error. 

3. using the SA register and the access mode of this memory 
reference (e.g., read vs write, instruction vs data) give 
an error if the access is illegal. 

4. Process the access on the basis of its subspace field. 

While this appears to be very simple and clean, the actual 

implementation in the hardware imposes several constraints. This 

implementation is shown in more detail in Figure 2.2-1. The 

address transformation function is defined as follows: 

- 14 - 

'" "MFA""'^—~—"' j1 —i '<— ■ 

r 



I 

i 

I 

I 

! 

I 

I 

Report   No.   4182 

SEGMENT 
ADDRESS      ATTRIBUTE 

REGISTERS 

000 

020 

040 

0100 

0140 

0160 

0200 

0245 

0300 

0320 

0340 

0400 

SPACE A 
16 SEGMENTS 

SPACE B 
16 SEGMENTS 

SPACE C 
32 SEGMENTS 

SPACE 0 
32 SEGMENTS 

SPACEE 
16 SEGMENTS 

SPACE P 
16 SEGMENTS 

SPACEG 

64 SEGMENTS 

SPACEH 
16 SEGMENTS 

SPACE I 
16 SEGMENTS 

SPACE J 
32 SEGMENTS 

SPACEK 
128 SEGMENTS 

Bolt Beranek ?nd Newman Inc. 

ADDRESS 
SPACE 

ATTRIBUTE 
REGISTER 

STARTING 
SEGMENT 

VIRTUAL ADDRESS 

SEGMENT       PAGE OFFSET 

SEGMENT ATTRIBUTE 
REGISTER NO. 24G 

PHYSICAL ADDRESS 

Figure 2.2-1 Virtual to Physical Address Translation 

I 

- 15 - 



Report No. 4182 Bolt. Beranek and Newman Inc 

The ASA register is a 12-bit register. The three most 

significant bits contain a code which specifies how many segments 

are in this process's address space. If a reference is made to a 

segment whose number exceeds this limit, an error will be 

generated. Since not all address space sizes can be specified by 

an ASA code, it may be necessary to specify a larger than 

required segment count. Unused segments may then be marked as 

invalid in the SA registers. 

The least significant 9 bits of the ASA register are 

logically "ORed" with the 8-bit segment number (padded with a 

zero on the left) to select the correct SA register. During this 

logical "OR", the bottom two bits of the ASA register are ignored 

and presumed to be zero. 

The logical "OR" function is used instead of addition 

because it is more quickly and easily calculated by the hardware. 

However, it constrains the allocation of SA registers. This 

issue is discussed further in Section 2.3.2. 

Once the correct SA register has been selected, it is 

combined with the segment offset from the virtual address to form 

the correct physical address. As the figure illustrates, the 

least significant 8 bits of the physical address come directly 

from the least significant 8 bits of the virtual address, while 

the most significant 16 bits come from the SA register directly. 

- 16 - 

i 

|i. 

I 
I 
I 

TT1 mmm -■•■-■■ 



I 
Report No. 4182 Bolt Beranek and Newman Inc. 

I 
The bits in between are the sum of fields from the SA 

register and the segment offset. This is detailed in the table 

below: 

Physical 
Address 
Bits Derived From 

7-0      Bits 7-0 of the virtual address 

15-8      Sum of bits 15-8 of the virtual address 
and bits 15-8 of the SA Register 

23-16      Bits 7-0 of the SA Register 

31-24      Bits 31-24 of the SA Register 

Since the segment offset in a virtual address is 16 bits 

long, the largest segment is S'.il bytes. However, segments need 

not be this large. A segment length field in the SA register 

defines the actual length. Each segment is defined to start at 

an offset of zero and to increase to this limit. The table below 

gives the segment length code and the corresponding limit on the 

number of bytes in the segment. The number is given in both 

decimal and octal for convenience. The largest valid segment 

offset is one less than this limit. 

- 17 - 

""5*|JJ~ r    ~    ~ir--"i ■«■  ■     ifjn»    mi i 



Report No. 4182 Bolt. Beranek and Newman Inc. 

Segment Length Segment Of fset Limit 
Code (Decimal) (Octal) 

0 256 0400 
1 65536 0200000 
2 512 01000 
3 768 01400 
4 1024 02000 
5 1536 03000 
6 2048 04000 
7 3072 06000 
8 4096 010000 
9 6144 014000 
10 8192 020000 
11 12288 030000 
12 16384 040000 
13 24576 060000 
14 32768 0100000 
15 49152 0140000 

For each virtual-to-physical address translation, the MMU 

also checks that the access is being performed in a legal mode. 

This protection is on a segment-by-segment basis. All of the 

locations in a segment are protected identically. The protection 

mechanism checks the access according to whether the processor is 

in Supervisor or User mode and whether the access is a data read 

or write or an instruction fetch. The code which specifies which 

modes of access are legal is in the SA register for the segment. 

The table below gives the protection codes and the corresponding 

set of legal access modes: 

- 18 - 

I ■ 



I 
Report   No.   4182 BoltBeranek  and   Newman   Inc 

Protection 
Class 

0 
1 
2 
3 
4 
5 
6 
7 

Allowed Access 
Characteristics 

Illegal to access 
Read only data or instruction fetch 
All accesses are legal 
Read or write data 
Read only data 
Supervisor read or write data 
Supervisor read only data 
Supervisor data or User data read only 

i 

[ 

1 

i 

If the access is legal, the access sequences to completion. 

If an inconsistency is detected, a bus error will be signaled to 

the MC68000 and the access will be aborted. 

Once the correct physical address has been generated and its 

validity checked, it is necessary to reference the correct 

physical memory location. While the physical address can 

uniquely specify the physical location, the hardware takes a 

short cut. 

The hardware interprets the physical address first on the 

basis of the subspace field rather than the Processor Node 

number. If the subspace is anything but subspace 3 (implying a 

remote memory reference), the access proceeds without regard for 

the Processor Node number. If the access is to subspace 3, a 

switch message is created even if the Processor Node number 

refers to the local Processor Node. This is important in 

achieving the highest possible memory speed and simplifies the 

hardware. For consistency, we expect the software to maintain 

the correct values in the Processor Node field even where the 

- 19 - 

WXZ 'J TT- 



Report No. 4182 BoltBeranek and Newman Inc. 

hardware would ignore it. Similarly, the software should 

normally detect when a memory segment is local to this Processor 

Node, and should declare it to be in Subspace 2. 

As a result of this implementation, the only subspace which 

may be accessed across the switch is the memory on a Processor 

Node. It is not possible to generate an access to a remote 

Processor Node's I/O device registers, its Processor Node 

Controller registers, or its EPROM. 

It is possible to send messages out through the switch and 

back to oneself simply by referencing subspace 3 with the correct 

Processor Node number. This will be useful in testing this 

Processor Node's switch interface and a portion of the switch. 

- 20 - 

r-^ -xmK^-'j——T—-■ -TT' 

] 

f 



I 
1 

Report No. 4182 Bolt Beranek and Newman Inc. 

2.3 Design Considerations 

The Memory Management hardware implements a  virtual memory 

system as  described  above.   The design of any virtual memory 

system raises complex issues.  This section discusses some of the 

issues which went into this design and elaborates some areas 

which require special care in the software which interfaces to 

the memory system. 

I 
2.3.1  Supervisor and User Modes 

The Memory Management Unit implements the virtual address 

space of a process. This leads to the question: What is the 

structure of a process's address space? The final use of the 

virtual address space is certainly less well defined than much of 

the hardware discussed previously, but nonetheless, it is 

important to consider an example in hopes of understanding the 

overall structure. The following example represents how the 

address space of one process might be laid out. 

Segment  Contents 

0 Interrupt Vectors 
1 Supervisor Code 
2 Supervisor Data 
3 Supervisor Stack 
4 Memory Management Registers 

5 User Code 
6 User Local Data 
7 User Stack 
8 User  Auxiliary  Segment 

"WSsCE '/ -wn 

-   21   - 
1., L 



Report No. 4182 Bolt Beranek and Newman Inc 

Segments 0 through 4 are for the supervisor. This points up 

a very important difference between this machine and other 

supervisor/user designs. The supervisor code does not run in a 

different address space from the user code, but rather runs in a 

subset of the same address space, but with protection modes so 

that this subset is not accessible In user mode. 

This structure has several important advantages. First, it 

permits a very natural form of argument passing between the user 

and the supervisor since the user mode arguments are also in the 

supervisor's address space. This is particularly true for 

arguments which are pointers to structures in the user's 

environment. 

Second, it makes it very natural to think of the supervisor 

as running on behalf of a particular user. There are separate 

stacks and separate data regions (if desired) for each process. 

Where it is necessary for the supervisor of one process to 

synchronize with another, this structure is very natural. 

The structure also has some disadvantages. It requires more 

mapping registers, since the supervisor is present in every 

address space. Presumably, with more hardware and a slightly 

slower memory management system, some of this overhead could be 

saved. It also requires that this portion of every process be 

the same. 

, 22 - 

-w 

I 



mjm» 

{ 
Report No. 4182 Bolt Beranek and Newmrn Inc. 

2.3.2 Multiple Address Spaces 

The use of processes in a real-time environment requires 

that the time spent scheduling processes and changing from one 

process to another be short. In order to minimize the process 

switching time, we have designed the hardware so that the maps 

for many processes can be in the mapping registers at the same 

time. One need only change the pointer into the mapping 

registers (the ASA Register) to change the current address space. 

For example, it is possible to have 32 processes which are 16 

segments long in the mapping registers at the same time. 

An cbvious question arises: What if there are more processes 

than fit in the maps? The simple answer is to swap the maps into 

and out of the SARs. However, since the number of processes in 

existence at any one time is probably limited by the amount of 

memory on a Processor Node, we can defer the design of the map 

swapping algorithms until we have a similar mechanism for 

swapping memory itself. 

I 

I 

Unfortunately, the ASA Register cannot point to any 

arbitrary map location because the mapping register which will be 

used is not the sum of the ASA ard the segment being addressed, 

but rather the "OR" of the two. This means that it is equivalent 

to addition only if there are no carries. 

i 
- 23 - 



Report No. 4182 Bolt Beranek and Newman Inc. 

In practice, this requires that the rightmost N bits of the 

ASA Register be zero for a space of 2**N segments. This means 

that address spaces must start on power-of-2 boundaries. One 

must of course manage the use of these memory maps, placing new 

processes in the maps and removing processes when they are 

destroyed. One of the simpler management schemes is the "buddy 

system". Fortunately, this allocation algorithm is itself based 

on power-of-2 boundaries and as a result matches the hardware 

restriction very well. 

A similar restriction occurs in that the adder in the 

translation does not carry past 16 bits in the physical memory 

space. This means that there are boundaries in physical memory 

every 2**16 (or 64K) bytes which segments may not cross. This 

boundary need not be visible to the application software, and is 

easily hidden by the physical memory allocation software: since 

the physical memory allocator will not allocate a block of memory 

which crosses this boundary, segments cannot be constructed which 

cross it. 

2.3.3 Protection 

The MMU not only defines a virtual address space but also 

controls accesses to it. The primitive unit of protection is the 

segment. Each segment can be protected so that certain subsets 

of accesses are permitted. The dimensions of this access are 

whether  the  processor is in User or Supervisor mode at the time 

- 24 - 

I 
I 
I 



t 
Report No. 4182 Bolt Beranek and Newman Inc. 

I 

and whether the access is an instruction fetch or a data read or 

write. There are 6 possible access modes, and therefore 6 bits 

are necessary to specify any set of valid access modes. Only a 

subset of the possible access modes have been implemented in the 

3 bits which code the permitted accesses. We may or may not have 

selected the correct options, but we have placed the protection 

checking  in  programmable hardware which is very easily changed. 

The MMU also permits control over the length of a segment. 

In particular, the mapping register for each segment specifies 

hov many pages (of 256 bytes) are contained in a segment. The 

available options span the range from 1 to 256 pages in 

nonuniform increments as shown in Section 2.2. The difference in 

size between two successive limits is approximately half of the 

smaller limit. This scheme is obviously a bit coarse since the 

smallest object that can be controlled is 256 bytes long and 

large objects will rarely have bounds which accurately match 

their length. 

In spite of these limitations, the Memory Management 

philosophy of the Butterfly is quite sophisticated. The impact 

of this on the complexity of the hardware is only now becoming 

clear, and its effect on the execution speed of the machine is 

yet to be determined. Finally, such a sophisticated mechanism is 

included in hopes that the difficult debugging problems which 

occur  so frequently in multiprocessor systems would be detected 

U - 25 - 



Report No, 4182 Bolt Beranek and Newman Inc. 

by this hardware. We cannot yet tell whether this advantage 

outweighs the additional complexity of the software which manages 

protection. 

2.3.4  Initialization 

At power-up, the contents of the various memory management 

registers are undefined. Since the processor cannot execute 

without these registers, immediately following a power-up 

sequence or a restart message (sent from another Processor Node), 

the Processor Node hardware will initialize the ASA register to 

indicate an 8 segment address space with the following segment 

attributes: 

Segment Access  Node   Sub-   Segment  Segment 
Number  Code   Number  Space  Offset  Length 

0 2 N 0 0 256 
1 2 N 1 0 256 
2 2 N 2 0 256 
3 2 N 3 0 256 
4 2 N 4 0 256 
'i 2 N 5 0 256 
5 2 N 6 0 256 
7 2 N 7 0 256 

In this table, N is the local Processor Node number. Thus 

all subspaces permit all types of accesses. After the Processor 

Node initializes various other Processor Node registers it resets 

the MC68000 which then responds by reading th first four words 

in virtual memory space (mapped into the first four words in 

EPROM) and loading them into the supervisor's stack  pointer  and 

- 26 - 

i 
D 
1 



I 
1 

I 

I 

I 

Report No. 4182 Bolt Beransk and Newman Inc. 

program counter. The stack pointer will be initialized to a 

location in segment four and the program counter will be 

initialized to a location in segment zero. The MC68000 will 

initialize the status register to an interrupt level of seven. 

It is hoped that this initialization will be realized by a 

very simple loop in the Processor Node Controller. If not, 

another initialization scheme may be devised. 

I 

i 

I 

- 27 - 



Report No. U182 Bolt Beranek and Newman Inc 

DISTRIBUTION OF THIS REPORT 

Defense Advanced Research Projects Agency 

Dr. Robert E. Kahn (2) 

Defense Supply Service — Washington 

Jane D. Hensley (1) 

Defense Documentation Center (12) 

Bolt Beranok and Newman Inc 

Library 

Library, Canoga Park Office 

R. Bressler 

R. Brooks 

P. Carvey 

P. Castleman 

G. Falk 

F. Heart 

M. Hoffman 

M. Kraley 

W. Mann 

J. Pershing 

R. Rettberg 

E. Starr 

E. Wolf 

- 28 - 

il 

11 
I 

■JI» 


